I have 4 books and 82 papers with several in preparation. In addition I have over 100 unpublished notes of various kinds on different aspects of mathematics and LGBTQ.
My research has been funded by:
1. National Science Foundation (NSF), USA.
2. United Kingdom Engineering and Physical Sciences Research Council, (EPSRC).
3. South African Center for High Performance Computing (CHPC)
4. Air Force of Scientific Research-DoD, USA.
5. Nevada State, USA.
Here is my publication and editing list with a link to each item in the list:
Books:
[1] S. B. Damelin and W. Miller, ''Mathematics of Signal Processing", Cambridge Texts in Applied Mathematics (No. 48) February 2012.
[2] S. B. Damelin, H. Guo and W. Miller, "Solutions to S. B. Damelin and W. Miller, Mathematics and Signal Processing", in Resources: Mathematics and Signal Processing, Cambridge Texts in Applied Mathematics (No. 48) February 2017.
[3] S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
K. Hamm, github.
[4] S. B. Damelin and W. Ma, "Topics in Integrable Systems, Special Functions, Orthogonal Polynomials and Random Matrices", Journal of Computational and Applied Mathematics, Special Volume, 202, (1), May 2007, pp 1-154.
Books: Edited:
[1] (Edited): A. Krall, Hilbert Space, "Boundary Value Problems and Orthogonal Polynomials", Birkhauser 2002.
[2] (Edited (partially)): E. B. Saff, V. Totik, "Logarithmic potentials with external fields", Springer 1997.
Research Papers:
[83] Yikun Bai, Huy Tran, Steven B. Damelin and Soheil Kolouri, Partial Transport for Point-Cloud Registration, preprint.
[82] J. Nathe and S.B. Damelin, "Subharmonic kernels and equilibrium measures", preprint.
[81] A. Anderson and S. B. Damelin, "Toward a characterization of packing and covering asymptotics via Minkowski contents", arXiv:2408.07634, submitted for consideration for publication.
[80] J. Sun and S. B. Damelin, "A note on an analytic approach to the problem of matroid representability, the cardinality of sets of k-Independent vectors over Finite Fields and the Maximum Distance Separable Conjecture", submitted for consideration for publication.
[79] S. B. Damelin and M. Werman, "On best uniform approximation of finite sets by linear combinations of real valued functions", submitted for consideration for publication.
[78] Gupreet Kalsi and Steven B. Damelin, "Well Separated Pair Decomposition and power weighted shortest path metric algorithm fusion", in S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[77] S. B. Damelin and Diethelm, "An analytic and numerical analysis of singular cauchy integrals with exponential-type weights", Numerical Analysis and Optimization, Volume 43, 2022, Issue 13.
[76] J. Sun, S. B. Damelin, D. Kaiser, and S. Bora, "An algebraic-coding equivalence to the maximal coding separable conjecture", Involve, arxiv 1705.06136, Involve, 17-3 (2024), 363--372.
[75] D. McKenzie and S. B. Damelin, "Power weighted shortest paths for clustering Euclidean data", in Foundations of Data Science (American Institute of Mathematical Sciences), Volume I, Issue 3 September 2019, pp 32-42.
[74] Damelin, S.B., Ragozin, D.L., Werman, M, "On min-max affine approximants of convex or concave real-valued functions from Rk, Chebyshev equioscillation and graphics". in: Hirn, M., Li, S., Okoudjou, K.A., Saliani, S. (eds.) Excursions in Harmonic Analysis. Applied and Numerical Harmonic Analysis, vol. 6. Springer, Cham (2021). doi.org/10.1007/978-3-030-69637-5-19.
[73] T. Lamberg, S. B. Damelin, P. Lakey, D. Moss and L. Koyen, "Visualizing integers, distance and groups on number lines", The Australian Mathematical Education Journal (AMEJ),(2)(11)(4), 2020.
[72] , N.Charalambides, S. B. Damelin and B.Swartz, "Isometries and equivalences between point configurations extended to e-diffeomorphisms", in S. B. Damelin, "Whitney extensions of smooth near isometries, shortest paths, BMO, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[71] S. B Damelin, C. Fefferman, "On the Whitney distortion extension problem for C^m(R^n) and C^m(R^n) and its applications to interpolation and alignment of data in R^n", in S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[70] S. B Damelin, C. Fefferman, "On the Whitney Extension-Interpolation-Alignment problem for almost isometries with small distortion in R^D", in S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[69] S. B. Damelin and C. Fefferman, "On Smooth Whitney Extensions of almost isometries with small distortion, Interpolation and Alignment in R^D", in S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[68] S. B. Damelin and C. Fefferman, "A BMO theorem for ε-distorted diffeomorphisms from R^D to R^D",
in S. B. Damelin, "Near extensions and Alignment of Data in R^n: Whitney extensions of smooth near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[67] S. B. Damelin and R. Renya, On the structure of the Littlewood polynomials and their zero sets, submitted for consideration for publication.
[66] A. Green and S. B. Damelin, "On the approximation of the quantum gates using lattices, in S.B Damelin, "Whitney extensions of smooth near isometries, shortest paths, BMO, equidistribution, clustering and non-rigid alignment of data in Euclidean space", John Wiley & Sons 2024.
[65] M. Hua, S. Damelin, J. Sun and M. Yu, "The truncated and supplemental matrix and applications", Involve, Vol. 11, No. 2, 2018.
[64] S. B. Damelin and N. Hoang, "On surface completion and image inpainting by biharmonic functions: Numerical aspects", International Journal of Mathematics and Mathematical Sciences, vol. 2018.
Link to Implementation in the scikit-image package.
[63] Sung J. Hwang, Steven B. Damelin, Alfred O. Hero III, "Shortest path through random points", The Annals of Applied Probability, 2016, Vol. 26, No. 5, pp 2791-2823.
[62] S. B. Damelin, Y. Gu, D. Wunsch and R. Xu, "Fuzzy adaptive resonance theory, diffusion maps and their applications to clustering and bi clustering", Math.Model.Nat.Phenom. Vol. 10, No 3, 2015, pp. 206-211.
[61] Raviv Raich, Jose A. Costa, Steven B. Damelin, Alfred O. Hero, "Classification constrained dimensionality reduction", in arxiv:0802.2906.
[60] Kerry Cawse, Steven B. Damelin, Amandine Robin, Michael Sears, "A parameter free approach for determining the intrinsic dimension of a hyperspectral image using Random Matrix Theory", IEEE Transaction on Image Processing, 22(4)(2013), 1301-1310.
[59] D. Benko, S. B. Damelin and P. Dragnev, "On supports of equilibrium measures with concave signed equilibria and the Iterated Balayage Algorithm", Journal of Computational Analysis and Applications, 9 (2012), pp 8-15.
[58] Louis du Plessis, Rui Xu, Steven Damelin, Michael Sears and Donald Wunsch, "Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art", Int. J. Systems Control and Communications, (3) (2011), pp 232-251.
[57] S. B. Damelin, F. Hickernell, D. Ragozin and X. Zeng, "On energy, discrepancy and G invariant measures on measurable subsets of Euclidean space", Journal of Fourier Analysis and its Applications (2010) (16), pp 813-839.
[56] Cawse K, Sears M, Robin A, Damelin S.B, Wessels K, van den Bergh F, Mathieu R, "Using random matrix theory to determine the number of endmembers in a hyperspectral image", WHISPERS 2010, June 14-16 2010, Reykjavik, Iceland.
[55] S. B. Damelin, J. Levesley, D. L. Ragozin and X. Sun, ''Energies, Group Invariant Kernels and Numerical Integration on Compact Manifolds", Journal of Complexity, 25(2009), pp 152-162.
[54] J. H. Ann, S. B. Damelin and P. Bigeleisen, " Identification of Nerves in Ultrasound Scans Using a Modified Mumford-Shah Functional and Prior Information", in "Ultrasound-Guided Regional Anesthesia and Pain Medicine", eds P. Bigeleisen, Chapter 40, Birkhauser, 2009..
[53] Michael Mitchley, Michael Sears and Steven B. Damelin, "Target detection I Hyperpectral mineral data using wavelet analysis", Proceedings of the 2009 IEEE Geosciences and Remote Sensing Symposium, Cape Town, pp 23-45.
[52] Louis du Plessis, Rui Xu, Steven B. Damelin, Michael Sears and Donald Wunsch, "Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art", Proceedings of IJCNN 2009, pp 32-36.
[51] S. B. Damelin, G. Mullen and G. Michalski, "The cardinality of sets of k independent vectors over finite fields", Monatsh.Math, 150(2008), pp 289-295.
[50] Kerry-Anne Cawse, Steven B. Damelin, Richard McIntyre, Michael Mitchley, Louis du Plessis and Michael Sears, "An Investigation of data compression for Hyperspectral core image data", Proceedings of the Mathematics in Industry Study Group 2008, South Africa, 2008, pp. 1-25
[49] Rui Xu, Steven B. Damelin, B. Nadler, and Donald C. Wunsch II, "Clustering of High-Dimensional Gene Expression Data with Feature Filtering Methods and Diffusion Maps", in BioMedical Engineering and Informatics, 2008. BMEI 2008, vol 1, pp 245-249, IEEE 2008.
[48] S. B. Damelin, A Walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of euclidean space, Numerical Algorithms, Volume 48 Number 1-3(2008), pp 213-235.
[47] S. B. Damelin, On Bounds for Diffusion, Discrepancy and Fill Distance Metrics, Springer Lecture Notes in Computational Science and Engineering, (2008) Vol. 58, pp 32-42.
[46] S. B. Damelin, Advances on regularity and dislocation properties of discrepancy, manifold learning and their applications, Algorithms for Approximation, (2007), pp 369-400.
[45] S. B. Damelin and A. J. Devaney, Local Paley Wiener theorems, Proceedings of Inverse Problems Symposium, East Lansing, Michigan, pp 1-12, June 2007.
[44] S. B. Damelin and A. J. Devaney, Local Paley Wiener theorems for analytic functions on the unit sphere, Inverse Problems, (23)(2)(2007), pp 463-475.
[43] S. B. Damelin, J. Levesley and X. Sun, Energy estimates and the Weyl criterion on compact homogeneous manifolds, Algorithms for Approximation, (2007), pp 359-368.
[42] Rui Xu, Steven B. Damelin, and Donald C. Wunsch II, "Applications of diffusion maps in gene expression data-based cancer diagnosis analysis," In Proceedings of the 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 4613-4616, August, 2007.
[41] S. B. Damelin and V. Maymeskul, Minimal Discrete Energy Problems and Numerical Integration on Compact Sets in Euclidean Spaces, Algorithms for Approximation, (2007) pp 359-368.
[40] Y. Ma, S. B. Damelin, O. Masoud and N. Papanikolopoulos, Activity Recognition via Classification Constrained Diffusion Maps, ISCV (International Symposium of Computer Vision), 2006, pp 1-8.
[39] D. Benko, S. B. Damelin and P. Dragnev, On the support of the equilibrium measure for arcs of the unit circle and real intervals, Electronic Transactions on Numerical Analysis, (25)(2006), pp 27-40.
[38] S. B. Damelin, V. Maymeskul, On Point Energies, Separation Radius and Mesh Norm for s-Extremal Configurations on Compact Sets in R^n, Journal of Complexity, Volume 21(6)(2006), pp 845-863.
[37] S. B. Damelin, Pointwise bounds of orthogonal expansions on the real line via weighted Hilbert Transforms, Advances in Computational Mathematics (2006), pp 1-21
[36] S. B. Damelin and H. S. Jung, Pointwise convergence of derivatives of weighted Lagrange interpolation polynomials for exponential weights, Journal of Computational and Applied Mathematics, Volume 173, (2)(2005), pp 303-319.
[35] S. B. Damelin, Asymptotics of recurrence coefficients for orthonormal polynomials on the line-Magnus's method revisited, Mathematics of Computation, 73(2004), pp 191-209.
[34] S. B. Damelin and K. Diethelm, Weighted polynomial approximation and Hilbert Transforms: Their connections to the numerical solution of singular integral equations, Proceedings of Dynamic Systems and Applications, Volume 4 (2004), pp 20-26 Ed. G. S. Ladde, N.G. Medhin. M. Sambandham.
[33] S. B. Damelin and K. Diethelm, Numerical solution of Fredholm integral equations on the line, Journal of Integral equations and Applications, Volume 13(3), 2004, pp 273-292.
[32] S. B. Damelin and P. Grabner, Energy functionals, Numerical integration and Asymptotic equidistribution on the sphere, Journal of Complexity, 19(2003), pp 231-246. (Postscript) Corrigendum, Journal of Complexity, (20)(2004), pp 883-884.
[31] S. B. Damelin, H. S. Jung and K. H. Kwon, Mean convergence of extended Lagrange interpolation for exponential weights, Acta Applicandae Mathematicae, 76(2003), pp 17-36.
[30] S. B. Damelin, On the maximum modulus of weighted polynomials in the plane, a theorem of Rakhmanov, Mhaskar and Saff revisited, Journal of Computational and Applied Mathematics, vol. 155 (2003), pp 455-459.
[29] S. B. Damelin, Marcinkiewicz-Zygmund inequalities and the numerical approximation of singular integrals for exponential weights: Methods, Results and Open Problems, some new, some old; Journal of Complexity, 19(2003), pp 406-415.
[28] S. B. Damelin, Weighted polynomial approximation on discrete sets, Monatshefte fur Mathematik, (138)(2)(2003), pp 111-131.
[27] S. B. Damelin, G. Mullen, G. Michalski and D. Stone, On the number of linearly independent binary vectors of fixed length with applications to the existence of completely orthogonal structures, Monatsh Math, (1)(2003), pp 1-12.
[26] B.Bajnok, S.B. Damelin, J. Li and G. Mullen, A constructive method of scattering points on d dimensional spheres using finite fields, Computing (Springer), 68 (2002), pp 97-109.
[25] S. B. Damelin, The Hilbert transform and orthonormal expansions for exponential weights, Approximation Theory X: Abstract and Classical Analysis, Chui, Schumaker and Stoekler (eds), Vanderbilt Univ. Press (2002), pp 117-135.
[24] S. B. Damelin, H. S. Jung and K. H. Kwon, Converse Marcinkiewicz-Zygmund inequalities on the real line with applications 22(2002), pp 33-55.
[23] S. B. Damelin, The asymptotic distribution of general interpolation arrays for exponential weights, Electronic Transactions of Numerical Analysis, Volume 12, 2002, pp 12-20.
[22] S. B. Damelin, H. S. Jung and K. H. Kwon, Convergence of Hermite-Fej'er and Hermite interpolation of higher order for Freud weights, Journal of Approximation Theory, 113 (2001), pp 21-58.
[21] S. B. Damelin, H. S. Jung and K. H. Kwon, A note on mean convergence of Lagrange interpolation in Lp, Journal of Computational and Applied mathematics, 133 (1-2) (2001), pp 277-282.
[20] S. B. Damelin, H. S. Jung and K. H. Kwon, On mean convergence of Hermite-Fej'er and Hermite interpolation for Erdős weights on the real line, Journal of Computational and Applied Math, Volume 137 (2001), pp 71-76.
[19] S. B. Damelin, H. S. Jung and K. H Kwon, Necessary conditions for mean convergence of Lagrange interpolation for exponential weights, Journal of Computational and Applied Mathematics, Volume 132(2)(2001), pp 357-369.
[18] S. B. Damelin and K. Diethelm, Boundedness and uniform approximation of the weighted Hilbert transform on the real line, Numer. Funct. Anal. and Optimiz., 22(1 and 2) (2001), pp 13-54.
[17] S. B. Damelin, Another look at an old paper of Geza Freud, Approximation Theory X, Charles Chui, Larry Schumaker and Joachim Stoekler (eds.), pp. 1-3.
[16] S. B. Damelin, P. Dragnev and A. Kuijlaars, The support of the equilibrium measure for a class of external fields on a finite interval, Pacific Journal of Mathematics, Volume 199 (2)(2001), pp 303-321.
[15] L. H. Damelin, S. Volles, J. M. Whitcutt, S. B. Damelin, J. J. Alexander, Hormesis: A stress response in cells exposed to low levels of heavy metals, Human and Experimental Toxicology, Volume 19,7: (2000), pp 420-430.
[14] S. B. Damelin, Smoothness theorems for generalized symmetric Pollakzek weights on (- 1,1), Journal of Computational and Applied Mathematics., 101 (1999), pp 87-103.
[13] S. B. Damelin and K. Diethelm, Interpolatory Product quadratures for Cauchy principal value integrals with Freud weights, Numer. Math. 83 (1999), pp. 87-105.
[12] S. B. Damelin, Smoothness theorems for Erdős weights II, J. Approx. Theory., Volume 97, (1999), pp 220-239.
[11] S. B. Damelin and A. Kuijlaars, The support of the extremal measure for monomial external fields on [ -1,1]., Trans.Amer.Math. Soc. 351 (1999), 4561-4584.
[10] S. B. Damelin, A characterization of smoothness for Freud weights, Journal of Computational and Applied Mathematics., 99(1998), pp 463-473.
[9] S. B. Damelin, The weighted Lebesgue constant of Lagrange interpolation for exponential weights on [-1,1], Acta-Mathematica (Hungarica)., 81(3) (1998), pp 211-228.
[8] S. B. Damelin, The Lebesgue constant of Lagrange interpolation for Erdős weights, J. Approx. Theory., Volume 94, 2, (1998), pp 235-262.
[7] S. B. Damelin and D. S. Lubinsky, Jackson theorems for Erdős weights in L_p, J. Approx. Theory., Volume 94, (3) (1998), pp 333-382.
[6] S. B. Damelin, Converse and smoothness theorems for Erdős weights in L_p, J. Approx. Theory., Volume 93, (3)(1998), pp 349-398.
[5] S. B. Damelin and D. S. Lubinsky, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdős weights II, Canad. Math. J., (40) (1996), pp 737--757.
[4] S. B. Damelin and D. S. Lubinsky, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdős weights, Canad. Math. J., (40)(1996), pp 710-736.
[3] S. B. Damelin, Marchaud inequalities for a class of Erdős weights, Approximation Theory VIII-Vol I (1995)., Approximation and Interpolation, Chui et al, pp 169--175.
[2] S. B. Damelin, Weighted approximation for Erdős weights, Disser. Math., Vol 1 (1996), pp 163--171.
[1] D. Greenblatt and S. B. Damelin, Laminar boundary layers subject to high frequency travelling--wave fluctuations, AJAA Journal., Vol. 31,